Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897666

RESUMEN

In this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)-g-polyaniline)-b-poly(N-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated surfactant-free emulsion polymerization (block copolymer), and interfacial oxidative polymerization were applied to graft the PAni chains. NMR and FT-IR spectroscopies were performed to confirm the structural elucidation of the reaction pathways, while the thermal properties were analyzed by TGA and DSC. Notably, the BL PAni presents absorption throughout the visible region and up to the near-infrared, showing dedoping resistance at up to 80 °C and at a neutral pH. The absorption range of the BL PAni, block copolymer, and homopolymer were studied by UV-Vis spectroscopy in solid-state and dispersion/solution, highlighting BL PAni and poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonate)-b-poly(N-vinylcarbazole) (PAAMP-b-PVK) due to the π-stacking between the anilinium and carbazole groups. The cyclic voltammetry confirmed the persistence of electroactivity at a pH near 7.


Asunto(s)
Acrilamidas , Polímeros , Compuestos de Anilina , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
2.
Polymers (Basel) ; 14(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35160621

RESUMEN

Renewable polymers possess the potential to replace monomers from petrochemical sources. The design and development of polymeric materials from sustainable materials are a technological challenge. The main objectives of this study were to study the microstructure of copolymers based on itaconic acid (IA), di-n-butyl itaconate (DBI), and lauryl methacrylate (LMA); and to explore and to evaluate these copolymers as pressure-sensitive adhesives (PSA). The copolymer synthesis was carried out through batch emulsion radical polymerization, an environmentally friendly process. IA was used in a small fixed amount as a functional comonomer, and LMA was selected due to low glass transition temperature (Tg). The structure of synthesized copolymers was studied by FTIR, 1H-NMR, Soxhlet extraction, and molecular weight analyses by GPC. Furthermore, the viscoelastic and thermal properties of copolymer films were characterized by DMA, DSC, and TGA. The single Tg displayed by the poly(DBI-LMA-IA) terpolymers indicates that statistical random composition copolymers were obtained. Moreover, FTIR and NMR spectra confirm the chemical structure and composition. It was found that a cross-linked microstructure and higher molecular weight are observed with an increase of LMA in the feed led. The Tg and modulus (G') of the copolymers film can be tuned with the ratio of DBI:LMA providing a platform for a wide range of applications as a biobased alternative to produce waterborne PSA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...